Mild guanidinoacetate increase under partial guanidinoacetate methyltransferase deficiency strongly affects brain cell development.
نویسندگان
چکیده
Among cerebral creatine deficiency syndromes, guanidinoacetate methyltransferase (GAMT) deficiency can present the most severe symptoms, and is characterized by neurocognitive dysfunction due to creatine deficiency and accumulation of guanidinoacetate in the brain. So far, every patient was found with negligible GAMT activity. However, GAMT deficiency is thought under-diagnosed, in particular due to unforeseen mutations allowing sufficient residual activity avoiding creatine deficiency, but enough guanidinoacetate accumulation to be toxic. With poorly known GAA-specific neuropathological mechanisms, we developed an RNAi-induced partial GAMT deficiency in organotypic rat brain cell cultures. As expected, the 85% decrease of GAMT protein was insufficient to cause creatine deficiency, but generated guanidinoacetate accumulation causing axonal hypersprouting and decrease in natural apoptosis, followed by induction of non-apoptotic cell death. Specific guanidinoacetate-induced effects were completely prevented by creatine co-treatment. We show that guanidinoacetate accumulation without creatine deficiency is sufficient to affect CNS development, and suggest that additional partial GAMT deficiencies, which may not show the classical brain creatine deficiency, may be discovered through guanidinoacetate measurement.
منابع مشابه
Biochemical and behavioural phenotyping of a mouse model for GAMT deficiency.
Deficiency of guanidinoacetate N-methyltransferase (GAMT) is the first described creatine (CT) deficiency syndrome in man, biochemically characterized by accumulation of guanidinoacetic acid (GAA) and depletion of CT. Patients exhibit severe developmental and muscular problems. We created a mouse model for GAMT deficiency, which exerts biochemical changes comparable with those found in human GA...
متن کاملGuanidino compounds in guanidinoacetate methyltransferase deficiency, a new inborn error of creatine synthesis.
The first inborn error of creatine metabolism (guanidinoacetate methyltransferase [GAMT] deficiency) has recently been recognized in an infant with progressive extrapyramidal movement disorder. The diagnosis was established by creatine deficiency in the brain as detected by in vivo magnetic resonance spectroscopy and by defective GAMT activity and two mutant GAMT alleles in a liver biopsy. Here...
متن کاملGuanidinoacetate methyltransferase (GAMT) deficiency
Keywords Disease name and synonyms Excluded diseases Diagnostic criteria / definition Prevalence Clinical description Management including treatment Etiology Diagnostic methods Genetic counseling / Prenatal diagnosis Unresolved Problems References Abstract Guanidinoacetate methyltransferase (GAMT, EC 2.1.1.2) deficiency is a newly recognized inborn error of creatine synthesis. The clinical phen...
متن کاملSuccessful treatment of a guanidinoacetate methyltransferase deficient patient: findings with relevance to treatment strategy and pathophysiology.
Biochemical and developmental results of treatment of a guanidinoacetate methyltransferase (GAMT) deficient patient with a mild clinical presentation and remarkable developmental improvement after treatment are presented. Treatment with creatine (Cr) supplementation resulted in partial normalization of cerebral (measured with magnetic resonance proton spectroscopy) and plasma levels of Cr and g...
متن کاملActivation of GABA(A) receptors by guanidinoacetate: a novel pathophysiological mechanism.
Guanidinoacetate methyltransferase (GAMT) deficiency is an autosomal recessively inherited disorder of creatine biosynthesis. The disease occurs in early life with developmental delay or arrest and several neurological symptoms, e.g., seizures and dyskinesia. Both the deficiency of high-energy phosphates in neurons and the neurotoxic action of the accumulated metabolite guanidinoacetate (GAA) a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurobiology of disease
دوره 79 شماره
صفحات -
تاریخ انتشار 2015